Scientists built an electricity-producing bionic mushroom

Scientists built an electricity-producing bionic mushroom

Scientists built an electricity-producing bionic mushroom

Cyanobacteria are common on land and in the oceans, and scientists are intrigued by their ability to turn light into energy via photosynthesis.

The research is part of a broader effort to better improve our understanding of cells biological machinery and how to use those intricate molecular gears and levers to fabricate new technologies and useful systems for defence, healthcare and the environment.

One big problem is that they do not survive long enough on artificial surfaces to be able to deliver on their power potential.That's where the humble button mushroom comes in.The fungi provide the bacteria with viable surface on which to grow as well as nutrients to stay alive.

A team of scientists, which includedtwo Indian-origin scientists, at Stevens Institute of Technology of New Jersey in the United States have successfully generated a small amount of electricity from the humble white button mushroom.

During the experiment, Mannoor and colleagues found that cyanobacterial cells lasted several days on the cap of a white button mushroom.

"Right now we are using cyanobacteria from the pond, but you can genetically engineer them and you can change their molecules to produce higher photo currents, via photosynthesis", said Sudeep Joshi.

Conjoined Bhutanese Twins Who Share Liver To Undergo Separation Surgery
If so it would also be divided, he said, and "our challenge will be to reconstruct their abdominal walls to close it over". Once the girls' internal organs were separated, the incisions will be closed over using skin, muscle and fat.

Evan Fournier knocks down game victor to down Cavs
The Magic will end the homestand on Friday night when the Washington Wizards come into town. Love has played in four games this season, averaging 19 points and 13.5 rebounds.

Boeing jet crash-lands at Guyana airport, 6 people injured
A spokesman for the airline said it "suffered an accident on landing", but all 118 passengers and eight crew were safe. Officials said that the injuries are non-life threatening, and those injured are being treated at Diamond Hospital.

An electrode network and cyanobacteria were 3D printed on a mushroom to generate bio-electricity. "We showed for the first time that a hybrid system can incorporate an artificial collaboration, or engineered symbiosis, between two different microbiological kingdoms", Joshi says.

"In this case, our system - this bionic mushroom - produces electricity", said Manu Mannoor, an assistant professor of mechanical engineering at Stevens. This bio-ink was printed in a spiral pattern that intersected with the electronic ink of the nanoribbons.

To make their bionic mushroom a reality, the researchers first 3D-printed an electronic ink containing graphene nanoribbons onto the cap of a living mushroom in a branched pattern. At these sites, electrons could transfer through the outer membranes of the bacteria to the conductive network of graphene nanoribbons.

The amount of electricity generated by the "bionic mushroom" varies depending on the density and alignment with which the bacteria is packed, the authors reported in the journal Nano Letters.

The feat was achieved by using 3D printing to attach clusters of cyanobacteria, a type of bacteria that derives its energy from the sun, on the button mushroom.

In a statement, Mannoor said the study could pave the way for larger opportunities involving bio-electricity. "By seamlessly integrating these microbes with nanomaterials, we could potentially realise many other wonderful designer bio-hybrids for the environment, defence, healthcare and many other fields".

Latest News